Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Commun Biol ; 5(1): 507, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1864775

ABSTRACT

Protein-lipid interactions are vital for numerous transmembrane signaling pathways. However, simple tools to characterize these interactions remain scarce and are much needed to advance our understanding of signal transduction across lipid bilayers. To tackle this challenge, we herein engineer nanodisc as a robust fluorescent sensor for reporting membrane biochemical reactions. We circularize nanodiscs via split GFP and thereby create an intensity-based fluorescent sensor (isenND) for detecting membrane binding and remodeling events. We show that isenND responds robustly and specifically to the action of a diverse array of membrane-interacting proteins and peptides, ranging from synaptotagmin and synuclein involved in neurotransmission to viral fusion peptides of HIV-1 and SARS-CoV-2. Together, isenND can serve as a versatile biochemical reagent useful for basic and translational research of membrane biology.


Subject(s)
COVID-19 , Nanostructures , Biophysical Phenomena , Coloring Agents , Humans , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Nanostructures/chemistry , SARS-CoV-2
2.
Biochem Biophys Res Commun ; 592: 51-53, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1611626

ABSTRACT

Omicron is a new variant of SARS-CoV-2, which is currently infecting people around the world. Spike glycoprotein, an important molecule in pathogenesis of infection has been modeled and the interaction of its Receptor Binding Domain with human ACE-receptor has been analysed by simulation studies. Structural analysis of Omicron spike glycoprotein shows the 30 mutations to be distributed over all domains of the trimeric protein, wherein the mutant residues are seen to be participating in higher number of intra-molecular interactions including two salt bridges emanating from mutant residues thereby stabilizing their conformation, as compared to wild type. Complex of Receptor Binding Domain (RBD) with human ACE-2 receptor shows seven mutations at interacting interface comprising of two ionic interactions, eight hydrogen bonds and seven Van der Waals interactions. The number and quality of these interactions along with other binding biophysical parameters suggests more potency of RBD domain to the receptor as compared to the wild type counterpart. Results of this study explains the high transmissibility of Omicron variant of SARS-CoV-2 that is currently observed across the world.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Biophysical Phenomena , COVID-19/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Molecular Dynamics Simulation , Mutation , Pandemics , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Structural Homology, Protein
3.
Phys Rev Lett ; 127(9): 094501, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1429386

ABSTRACT

Turbulent puffs are ubiquitous in everyday life phenomena. Understanding their dynamics is important in a variety of situations ranging from industrial processes to pure and applied science. In all these fields, a deep knowledge of the statistical structure of temperature and velocity space-time fluctuations is of paramount importance to construct models of chemical reaction (in chemistry) and of condensation of virus-containing droplets (in virology and/or biophysics) and optimal mixing strategies in industrial applications. As a matter of fact, results of turbulence in a puff are confined to bulk properties (i.e., average puff velocity and typical decay or growth time) and date back to the second half of the 20th century. There is, thus, a huge gap to fill to pass from bulk properties to two-point statistical observables. Here, we fill this gap by exploiting theory and numerics in concert to predict and validate the space-time scaling behaviors of both velocity and temperature structure functions including intermittency corrections. Excellent agreement between theory and simulations is found. Our results are expected to have a profound impact on developing evaporation models for virus-containing droplets carried by a turbulent puff, with benefits to the comprehension of the airborne route of virus contagion.


Subject(s)
Models, Biological , Models, Theoretical , Air Microbiology , Biophysical Phenomena , COVID-19/transmission , COVID-19/virology
4.
Sci Rep ; 11(1): 15429, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1333985

ABSTRACT

Evidences are escalating on the diverse neurological-disorders and asymptomatic cardiovascular-diseases associated with COVID-19 pandemic due to the Sanal-flow-choking. Herein, we established the proof of the concept of nanoscale Sanal-flow-choking in real-world fluid-flow systems using a closed-form-analytical-model. This mathematical-model is capable of predicting exactly the 3D-boundary-layer-blockage factor of nanoscale diabatic-fluid-flow systems (flow involves the transfer of heat) at the Sanal-flow-choking condition. As the pressure of the diabatic nanofluid and/or non-continuum-flows rises, average-mean-free-path diminishes and thus, the Knudsen-number lowers heading to a zero-slip wall-boundary condition with the compressible-viscous-flow regime in the nanoscale-tubes leading to Sanal-flow-choking due to the sonic-fluid-throat effect. At the Sanal-flow-choking condition the total-to-static pressure ratio (ie., systolic-to-diastolic pressure ratio) is a unique function of the heat-capacity-ratio of the real-world flows. The innovation of the nanoscale Sanal-flow-choking model is established herein through the entropy relation, as it satisfies all the conservation-laws of nature. The physical insight of the boundary-layer-blockage persuaded nanoscale Sanal-flow-choking in diabatic flows presented in this article sheds light on finding solutions to numerous unresolved scientific problems in physical, chemical and biological sciences carried forward over the centuries because the mathematical-model describing the phenomenon of Sanal-flow-choking is a unique scientific-language of the real-world-fluid flows. The 3D-boundary-layer-blockage factors presented herein for various gases are universal-benchmark-data for performing high-fidelity in silico, in vitro and in vivo experiments in nanotubes.


Subject(s)
Fluid Shifts/physiology , Models, Theoretical , Nanotubes/chemistry , Rheology/methods , Algorithms , Biophysical Phenomena , COVID-19/physiopathology , Cardiovascular Physiological Phenomena , Cardiovascular System/physiopathology , Computational Biology/methods , Humans , Hydrodynamics , Physical Phenomena , SARS-CoV-2/isolation & purification
6.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195826

ABSTRACT

Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but the antibody characteristics that contribute to efficacy remain poorly understood. This study analyzed plasma samples from 126 eligible convalescent blood donors in addition to 15 naive individuals, as well as an additional 20 convalescent individuals as a validation cohort. Multiplexed Fc Array binding assays and functional antibody response assays were utilized to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody composition and activity. Donor convalescent plasma samples contained a range of antibody cell- and complement-mediated effector functions, indicating the diverse antiviral activity of humoral responses observed among recovered individuals. In addition to viral neutralization, convalescent plasma samples contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis, and antibody-dependent cellular cytotoxicity against SARS-CoV-2. Plasma samples from a fraction of eligible donors exhibited high activity across all activities evaluated. These polyfunctional plasma samples could be identified with high accuracy with even single Fc Array features, whose correlation with polyfunctional activity was confirmed in the validation cohort. Collectively, these results expand understanding of the diversity of antibody-mediated antiviral functions associated with convalescent plasma, and the polyfunctional antiviral functions suggest that it could retain activity even when its neutralizing capacity is reduced by mutations in variant SARS-CoV-2.IMPORTANCE Convalescent plasma has been deployed globally as a treatment for COVID-19, but efficacy has been mixed. Better understanding of the antibody characteristics that may contribute to its antiviral effects is important for this intervention as well as offer insights into correlates of vaccine-mediated protection. Here, a survey of convalescent plasma activities, including antibody neutralization and diverse effector functions, was used to define plasma samples with broad activity profiles. These polyfunctional plasma samples could be reliably identified in multiple cohorts by multiplex assay, presenting a widely deployable screening test for plasma selection and investigation of vaccine-elicited responses.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Antigens, Viral/immunology , Biophysical Phenomena , Cohort Studies , Complement Activation , Convalescence , Female , Humans , Immunization, Passive , Male , Middle Aged , Phagocytosis , Young Adult , COVID-19 Serotherapy
7.
J Photochem Photobiol B ; 213: 112083, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023667

ABSTRACT

In developing an effective clinical tool against COVID-19, we need to consider why SARS-CoV-2 infections develop along remarkably different trajectories: from completely asymptomatic to a severe course of disease. In this paper we hypothesize that the progressive exhaustion and loss of lymphocytes associated with severe stages of COVID-19 result from an intracellular energy deficit in an organism which has already been depleted by preexisting chronic diseases, acute psychological stress and the aging process. A bioenergetics view of COVID-19 immunopathology opens a new biophysical opportunity to enhance impaired immune function via proposed pathways of photomagnetic catalysis of ATP synthesis, regenerative photobiomodulation and the ultrasonic acceleration of cell restructuring. Moreover, we suggest that a coherent application of multiple biophysical radiances (coMra) may synergistically enhance energy-matter-information kinetics of basal self-regeneration of cells and thus improve immune function and accelerate recovery.


Subject(s)
Biophysical Phenomena/physiology , COVID-19/metabolism , COVID-19/therapy , Energy Metabolism/physiology , Low-Level Light Therapy/methods , Ultrasonic Therapy/methods , COVID-19/immunology , Humans , Low-Level Light Therapy/trends , Ultrasonic Therapy/trends
8.
Sci Rep ; 10(1): 19537, 2020 11 11.
Article in English | MEDLINE | ID: covidwho-920620

ABSTRACT

The COVID-19 pandemic has posed significant challenges globally. Countries have adopted different strategies with varying degrees of success. Epidemiologists are studying the impact of government actions using scenario analysis. However, the interactions between the government policy and the disease dynamics are not formally captured. We, for the first time, formally study the interaction between the disease dynamics, which is modelled as a physical process, and the government policy, which is modelled as the adjoining controller. Our approach enables compositionality, where either the plant or the controller could be replaced by an alternative model. Our work is inspired by the engineering approach for the design of Cyber-Physical Systems. Consequently, we term the new framework Compositional Cyber-Physical Epidemiology. We created different classes of controllers and applied these to control the disease in New Zealand and Italy. Our controllers closely follow government decisions based on their published data. We not only reproduce the pandemic progression faithfully in New Zealand and Italy but also show the tradeoffs produced by differing control actions.


Subject(s)
Coronavirus Infections/epidemiology , Models, Statistical , Pneumonia, Viral/epidemiology , Biophysical Phenomena , COVID-19 , Humans , Pandemics , Policy
9.
Sci Rep ; 10(1): 16986, 2020 10 12.
Article in English | MEDLINE | ID: covidwho-851312

ABSTRACT

We performed molecular dynamics simulation of the dimeric SARS-CoV-2 (severe acute respiratory syndrome corona virus 2) main protease (Mpro) to examine the binding dynamics of small molecular ligands. Seven HIV inhibitors, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir, were used as the potential lead drugs to investigate access to the drug binding sites in Mpro. The frequently accessed sites on Mpro were classified based on contacts between the ligands and the protein, and the differences in site distributions of the encounter complex were observed among the ligands. All seven ligands showed binding to the active site at least twice in 28 simulations of 200 ns each. We further investigated the variations in the complex structure of the active site with the ligands, using microsecond order simulations. Results revealed a wide variation in the shapes of the binding sites and binding poses of the ligands. Additionally, the C-terminal region of the other chain often interacted with the ligands and the active site. Collectively, these findings indicate the importance of dynamic sampling of protein-ligand complexes and suggest the possibilities of further drug optimisations.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/metabolism , Drug Repositioning/methods , HIV Protease Inhibitors/pharmacology , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/metabolism , Betacoronavirus/metabolism , Binding Sites/drug effects , Biophysical Phenomena , COVID-19 , Catalytic Domain/drug effects , Computational Biology , Coronavirus 3C Proteases , Darunavir/metabolism , Darunavir/pharmacology , HIV Protease Inhibitors/metabolism , Humans , Indinavir/metabolism , Indinavir/pharmacology , Lopinavir/metabolism , Lopinavir/pharmacology , Molecular Dynamics Simulation , Nelfinavir/metabolism , Nelfinavir/pharmacology , Pandemics , Ritonavir/metabolism , Ritonavir/pharmacology , SARS-CoV-2 , Saquinavir/metabolism , Saquinavir/pharmacology
10.
Electromagn Biol Med ; 39(4): 340-346, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-707219

ABSTRACT

All therapeutic methods dealing with coronavirus (past and present) are based on chemicals. We test for it (positive or negative) chemically and hope to cure it with a future vaccine (some complicated chemical preparation). If and when the virus mutates, another set of chemical protocols for its testing and a hunt for new chemicals as a vaccine shall begin again and again. But the history of modern (western) medicine tells us that our biotechnology is not so limited. Copious scientific evidence for sonic and low energy electromagnetic signals produced by all biological elements (DNA, cells, bacteria, parasites, virus) exists; in turn, the biological elements are affected by these non-chemical signals as well. A careful analysis and a catalogue of the spectrum of these non-chemical signals are proposed here as a unique biophysical signature.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Models, Biological , Pneumonia, Viral/virology , Radio Waves , Bacterial Physiological Phenomena , Biophysical Phenomena , COVID-19 , DNA/chemistry , Electromagnetic Phenomena , Humans , Microbial Interactions/physiology , Nanowires/chemistry , Pandemics , SARS-CoV-2 , Signal Transduction/physiology , Ultrasonics , Water/chemistry
12.
Viruses ; 12(4)2020 04 08.
Article in English | MEDLINE | ID: covidwho-42020

ABSTRACT

Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.


Subject(s)
Membrane Fusion , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virus Internalization , Biophysical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL